Install MongoDB Community Edition and PyMongo on OS X

  • Install Homebew, a free and open-source software package management system that simplifies the installation of software on Apple’s macOS operating system.

/usr/bin/ruby -e “$(curl -fsSL

  • Ensure that you’re running the newest version of Homebrew and that it has the newest list of formulae available from the main repository

brew update

  • To install the MongoDB binaries, issue the following command in a system shell:

brew install mongodb

  • Create a data directory (-p create nested directories, but only if they don’t exist already)

mkdir -p ./data/db

  • Before running mongodb for the first time, ensure that the user account running mongodb has read and write permissions for the directory

sudo chmod 765 data

  • Run MongoDB

mongod –dbpath data/db

  • To stop MongoDB, press Control+C in the terminal where the mongo instance is running

Install PyMongo

pip install pymongo

  • In a Python interactive shell:

import pymongo

from pymongo import MongoClient


  • Create a Connection

client = MongoClient()

  • Access Database Objects

MongoDB creates new databases implicitly upon their first use.

db = client.test

  • Query for All Documents in a Collection

cursor = db.restaurants.find()

for document in cursor: print(document)

  • Query by a Top Level Field

cursor = db.restaurants.find({“borough”: “Manhattan”})

for document in cursor: print(document)

  • Query by a Field in an Embedded Document

cursor = db.restaurants.find({“address.zipcode”: “10075”})

for document in cursor: print(document)

  • Query by a Field in an Array

cursor = db.restaurants.find({“grades.grade”: “B”})

for document in cursor: print(document)


  • Insert a Document

Insert a document into a collection named restaurants. The operation will create the collection if the collection does not currently exist.

result = db.restaurants.insert_one(


“address”: {            “street”: “2 Avenue”,            “zipcode”: “10075”,            “building”: “1480”,            “coord”: [-73.9557413, 40.7720266]        },

“borough”: “Manhattan”,

“cuisine”: “Italian”,

“grades”: [

{                “date”: datetime.strptime(“2014-10-01”, “%Y-%m-%d“),                “grade”: “A”,                “score”: 11            },

{                “date”: datetime.strptime(“2014-01-16”, “%Y-%m-%d“),                “grade”: “B”,                “score”: 17            }        ],

“name”: “Vella”,

“restaurant_id”: “41704620”